On second order nonlinearities of cubic monomial Boolean functions
نویسندگان
چکیده
We study cubic monomial Boolean functions of the form Trn 1 (μx 2i+2j+1) where μ ∈ F2n . We prove that the functions of this form do not have any affine derivative if n 6= i+ j or n 6= 2i− j. Lower bounds on the second order nonlinearities of these functions are derived.
منابع مشابه
Second Order Nonlinearities of Some Classes of Cubic Boolean Functions Based on Secondary Constructions
The higher order nonlinearity of a Boolean function is a cryptographic criterion, which play a role against attacks on stream and block ciphers. Also it play a role in coding theory, since it is related to the covering radii of Reed-Muller codes. In this paper, we study the lower bounds of second-order nonlinearities of a class of cubic Boolean functions of the form with and ∈ ′ and some classe...
متن کاملThe Lower Bounds on the Second Order Nonlinearity of Cubic Boolean Functions
It is a difficult task to compute the r-th order nonlinearity of a given function with algebraic degree strictly greater than r > 1. Even the lower bounds on the second order nonlinearity is known only for a few particular functions. We investigate the lower bounds on the second order nonlinearity of cubic Boolean functions Fu(x) = Tr( Pm l=1 μlx l), where ul ∈ F ∗ 2n , dl = 2l + 2l + 1, il and...
متن کاملThird-order nonlinearities of some biquadratic monomial Boolean functions
In this paper, we estimate the lower bounds on third-order nonlinearities of some biquadratic monomial Boolean functions of the form Trn 1(λx d) for all x ∈ F2n , where λ ∈ F2n , (1) d = 2i +2 j +2k +1, i, j,k are integers such that i > j > k ≥ 1 and n > 2i. (2) d = 23` +22` +2` +1, ` is a positive integer such that gcd(i,n) = 1 and n > 6.
متن کاملHigher Order-Nonlinearities on Two Classes of Boolean Functions
we compute the lower bounds on higherorder nonlinearities of monomial partial-spreads type bent Boolean function ), ( ) ( 1 2 1 2 n x Tr x f n where , , * 2 2 n n F F x n is an even positive integer and inverse Boolean function ), ( ) ( 2 2 1 n x Tr x g n where , , * 2 2 n n F F x n is any positive integer. We also show that our lower bounds are better then the Carlet...
متن کاملOn lower bounds of second-order nonlinearities of cubic bent functions constructed by concatenating Gold functions
In this paper we consider cubic bent functions obtained by Leander and McGuire (J. Comb. Th. Series A, 116 (2009) 960-970) which are concatenations of quadratic Gold functions. A lower bound of second-order nonlinearities of these functions is obtained. This bound is compared with the lower bounds of second-order nonlinearities obtained for functions belonging to some other classes of functions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009